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Abstract

In the standard one-stage object detection, the loss is calculated per anchor by ignoring
high-level structural information and prediction inter-dependencies. In this work, we
rethink object detection training to enforce the bird’s-eye perspective on predictions. We
propose a Full-Scale Gambler architecture that is inspired by Gambling networks from
semantic segmentation. The Gambler receives the full prediction map from the one-stage
detector, plus the corresponding image and outputs a weight per anchor to focus detector
training onpossibly inaccurate predictions. Thedetector is involved in an adversarialmin-
imax game with the Gambler. Our method yields minimal gain in detection performance
on benchmarks like COCO and LVIS, however, introducing marginal improvements for
long-tailed categories. We perform extensive quantitative and qualitative analysis and
identify several potential problems and recommend future directions that could further
benefit Gambling-based object detection.
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Introduction

Object detection is one of the most fundamental and challenging problems in computer
vision and has been widely studied in the past decade. Object detection aims to precisely
localize objects and assign each object instance the corresponding class label in an image.
In the standard one-stage object detection, the objective function is computed per an-
chor, irrespective of anchor inter-dependencies. These objective functions disregard the
possibility of incorporating high-level structural consistencies in an image and missing
the bird’s-eye perspective. Gambling networks [1] have been introduced with this scope
for semantic segmentation. They proved to decrease inconsistencies in semantic seg-
mentation predictions by capturing the top-down structure of the scene, which helped
generalize beyond the noise and lead to learned hard negative mining. In this work, we
propose to apply Gambling networks to the object detection setting.

We would like to answer the following research questions:

1. How can we incorporate Gambling-based adversarial training in object detection?

2. What are the effects of the Gambler on object detection?

An adaptation of the original Gambling net to object detection is not trivial for several
factors:

1. The most challenging problem in object detection is the foreground-background
imbalance, which is identified as the main obstacle in poor object detection perfor-
mance [2]. The output of the detection network consists mostly of backgrounds and
few foregrounds. This highlights another major difference between segmentation
and detection tasks, where the output of segmentation is dense, while detection is
sparse.

2. Most state-of-the-art one-stage detectors compute predictions at multiple levels of
a feature hierarchy, to predict objects at different scales. In other words, for each
pixel location, feature maps from different levels are combined to fully capture the
semantic of the object centered at that location.

3. Unlike segmentation,where eachoutputprediction canbe easilymapped to an input
location, the input and output spaces of object detectors differ. Box predictions are
encoded as regressed coordinates with respect to the image frame or the nearest
anchor and need to be decoded in order tomap them on the input image. This poses
an additional challenge for the Gambler.

We propose a Full-Scale Gambler architecture that generalizes from gambling-based
segmentation to object detection. We perform thorough ablation studies to validate the
design choices. The full-scale Gambler receives the complete hierarchical prediction map
from a one-stage detector, and the corresponding image and outputs a weight per anchor
to focus training on likely incorrect predictions. During training, the detector is involved
in an adversarial minimax game with the Gambler.
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We present an extensive quantitative and qualitative evaluation on two public bench-
marks, COCO [3] and the more challenging long-tailed dataset, LVIS [4]. The improve-
ments in the overall mAP are, however, minimal. For this reason, we perform an in-depth
investigation of the results. We show that although the full-scale Gambler for object de-
tection is not flexible to noise or overfitting, it marginally improves the long-tailed classes.
This analysis helps us to point to potential problems in the formulation, and present
future directions that we believe might help to improve gambling-based object detection.
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Background and Related Work

Object Detection

Object detection is a fundamental visual recognition task in computer vision, widely
studied in the past decade. Object detection aims to find objects of specific categories and
localize them with a bounding box in a given image, assigning each bounding box the
corresponding object category label.

Classically the pipeline of object detection is divided into three steps: 1) proposal
generation, 2) feature vector extraction, and 3) classification. In proposal generation, the
goal is to localize regions of interest (ROI) in the image which are likely to contain objects.
Typically this is achieved by scanning the whole image in a sliding window fashion [5]–
[9]. In order to capture information on multiple scales and with different aspect ratios of
objects, input images are resized to different scales, and multi-scale sliding windows are
used to slide through these images. In the feature vector extraction step a fixed-length
feature vector is computed from each ROI. They are constructed in a way to capture
discriminative semantic information. This feature vector is often one or a combination of
low-level visual descriptors such as SIFT [10], Haar [11], HOG [8], or SURF [12]. For the
classification step a classificationmodel is trained to predict the correct object category for
a given feature vector. One commonly utilized classifier are SVMs [13]. Further, different
classification techniques such as bagging [14], cascade learning [9], and AdaBoost [15]
were used in the region classification step, which led to further improvements in detection
accuracy. However,most of the successful traditionalmethods for object detection focused
on carefully designing better feature descriptors to obtain embedding for a region of
interest. From 2008 to 2012, the progress on Pascal VOC [16] with traditionalmethods had
become incremental, with only minor gains, which showed the limitations of traditional
detectors.
These limitations include:

1. A vast number of redundant proposals leading to false positives.

2. Hand-crafted feature descriptors based on low-level visual signals [17], [18], [12],
making it challenging to capture representative semantic information in complex
contexts.

3. Separate design and optimization of detection pipeline, not leading to a globally
optimal solution.

In 2012, after the success of applying deep convolutional neural networks for image
classification [19], [20], object detection also achieved remarkable progress based on deep
learning techniques [21], [22]. Thenewdeep learningbased algorithms showedpromising
results compared to traditional methods. CNNs generate hierarchical deep features from
low-level to high-level information. Those features are learned end-to-end with one fixed
training objective andnonecessity of hand-crafting features. By learning thedeep features
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Figure 1: An overview of the R-CNN architecture [29]

directly from data the features are optimized to be discriminativewith regards to the used
classifier or object detector.

Currently, deep learning based object detection frameworks can be primarily divided
into three families: (1) two-stage detectors [23], [24], [25] (2) anchor-free detectors, and (3)
one-stage detectors [26], [27], [2].

2-stage (Sparse) Detectors

Two-stage detectors split the detection objective into two stages: In the first stage a
proposal generator generates a sparse set of proposals and extracts features from each
proposal region. In the second stage a classifier predicts the object category for each
proposal region.

R-CNN [22] is a pioneering two-stage object detector. For each image, R-CNNgenerates
a sparse set of proposals (around 2,000 proposals) via Selective Search [28], which is
designed to reject regions that can easily be identified as background. Each proposal is
cropped and resized into a fixed-size region and encoded into a feature vector, followed
by a one-vs-all SVM classifier. Finally, the bounding box regressors are learned using
the extracted features as input in order to make the original proposals tightly bound the
objects.

However, in R-CNN, the feature proposals were extracted separately (i.e., the com-
putation was not shared), making it extremely time-consuming for training and testing.
Besides, the three steps of R-CNN were independent components that could not be opti-
mized in an end-to-end manner. Selective Search relied on low-level visual cues and thus
struggled to generate high-quality proposals in complex contexts.

To accelerate R-CNNand learnmore discriminative features, instead of cropping region
proposals and feeding them into the CNN model separately, Fast R-CNN [24] computes
the feature map from the whole image using a deep convolutional network and extracts
fixed-length feature vectors on the featuremap. It also uses theROI Pooling layer to extract
region features. ROI pooling layer only takes a single scale to partition the proposal into
a fixed number of divisions and backpropagates errors through the CNN. After feature
extraction, feature vectors are fed into a sequence of fully connected layers before two
output layers: classification head (cls) and regression head (reg). The classification head
is responsible for generating SoftMax probabilities over C+1 classes (C classes plus one
background class), while the regression head encodes 4 real-valued parameters to refine
bounding boxes.

Despite the progress in object detectors, the proposal generation step still relies on
traditional methods such as Selective Search. To address this problem, Faster R-CNN [25]
relies on the fully convolutional Region Proposal Network(RPN). RPN takes an image of
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Figure 2: An overview of the Fast R-CNN architecture [29]

arbitrary size and generates a set of object proposals on each position of the feature map
in a sliding window manner. The feature vector is then fed into two output branches, the
object classification layer classifies a region proposal as an object or background, and the
bounding box regression layer. These results are then fed into the final layer for the actual
object classification and bounding box localization like in Fast R-CNN.

Figure 3: An overview of the Faster R-CNN architecture [29]

Two-stage detectors usually achieve better detection performance, while compensating
for memory usage.

1-stage (Dense) Detectors

Unlike two-stage, one-stage detectors make a direct categorical prediction of objects on
each location of the feature maps, bypassing the proposal classification step. They con-
sider all positions on the image as the center of bounding boxes with different scales and
aspect ratios (these boxes are called anchors) as potential objects and try to classify each
anchor as either background or a target category.

One of the first successful one-stage detectors is called YOLO [26] (You Only Look
Once). YOLO solves object detection as a regression problem by spatially dividing the
whole image into a fixed number of grid cells (e.g., a 7×7 grid). Each cell is considered a
proposal. Which based on the original implementation, it could contain the center of up
to two objects. For each cell, the following are predicted:

1. Whether that cell has an object

2. The bounding box coordinates, the width, and the height

3. The target class of that object
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Figure 4: An overview of the YOLO architecture [30]

The following is the objective function in YOLO:
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Since YOLO is a single network, it could be optimized in an end-to-end manner. How-
ever, YOLO can only detect up to two objects at a given location, making it difficult
to detect small objects and objects in clutter. Also, since only the last feature map is
used for prediction, predicting objects at multiple scales and aspect ratios becomes more
challenging.

Figure 5: An overview of the SSD architecture [30]

To address the limitations of YOLO, Single-Shot Multibox Detector (SSD)[31] divides
images into grid cells, but in this method in each grid cell, a set of anchors with multiple
scales and aspect ratios are generated to capture objects with different sizes and shapes.
Each anchor is refined by 4-value offsets learned by the regressors and is assigned C+1 (C
categories + 1 background) categorical probabilities by the classifiers. In addition, SSD
predicts objects on multiple feature maps, and each of these feature maps is responsible
for detecting a particular scale of objects based on the receptive field. Extra convolutional

6



feature maps are added to the original backbone architecture to detect large objects and
increase receptive fields.

The whole network is optimized end-to-end with a weighted sum of localization loss
and classification loss. The final prediction is made by merging all detection results from
different featuremaps. After thematching step, most of the default boxes are background
proposals that dominate the training gradients. Thus, background proposals are sorted
ascending by confidence loss and picked to keep the 3:1 ratio between background and
foreground proposals (hard negative mining). The detection performance can also be
improved by several data augmentation techniques.

Retinanet and Focal Loss

So far, one-stage detectors have trailed the accuracy of two-stage detectors while being
significantlymore time-efficient and having greater applicability to real-time object detec-
tion. Lin et al. [2] claim that the extreme foreground-background (fg-bg) class imbalance
encountered during the training of dense detectors is the cause for such low performance.
Since one-stage detectors lack the proposal generation step, several tricks are used to
compensate for the foreground-background imbalance, such as hard negative mining.
In RetinaNet [2], the foreground-background imbalance problem is addressed in a more
flexible manner. RetinaNet uses focal loss, which suppresses the gradients of easy neg-
ative samples instead of simply discarding them. Focal loss could be considered "soft"
hard-example mining. The proposed focal loss outperforms naive hard negative mining
strategy by large margins.

Figure 6: Setting γ > 0 reduces the relative loss for well-classified examples (pt > 0.5),
putting more focus on hard, misclassified examples. [2]

Here, we will go into more detail about Focal loss by starting from the Cross-Entropy
(CE) loss for binary classification, see Equation 2.

CE(p, y) =

{
− log(p) if y = 1
− log(1− p) otherwise.

(2)

pt =

{
p if y = 1
1− p otherwise.

(3)

In this formula y specifies the ground-truth class (that could be either 0 or 1), and
p ∈ [0, 1] is the model’s estimated class probability for the class with label y = 1. pt
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is defined for notational convenience so the binary cross-entropy formulation would be
simplified to Equation 4.

CE(p, y) = CE(pt) = − log(pt) (4)

The potential problem with cross-entropy loss is that even easily classified anchors
would still have a small loss, but when summed over a large number of them, in this
case, with the domineering background class, the sum would dominate the gradient and
the total loss and degrade performance for the less frequent foreground anchors. To
overcome this issue, Focal loss is proposed, which down-weights easy examples and thus
focus training on hard negatives, in this case, most probably the foreground anchors, see
Equation 5. For misclassified anchors, pt is small; thus, 1− pt is near 1, and the loss is
unaffected. As pt goes to 1 for well-classified anchors, 1− pt goes to 0, and the loss is
down-weighted.

FL(Pt) = −αt · (1− pt)
γ · log (pt) (5)

0 ≤ γ is a tunable focusing parameter that smoothly adjusts the rate at which easy
examples are down-weighted. Focal loss with γ = 0 is equivalent to cross-entropy.
α ∈ [0, 1] is a weighting factor introduced as an extension to cross-entropy called the
α-balanced cross-entropy. αt is defined just like the pt formulation.

Apart from thedifferent classification loss formulation, inRetinaNet, a Feature Pyramid
Network (FPN) is proposed as the backbone architecture, which combines deep-layer fea-
tures with shallow-layer features to enable multi-scale object detection. This backbone’s
main idea is to strengthen the spatially-powerful shallow layer featureswith semantically-
richdeep layer features. FPNachieves significant progress indetectingmulti-scale objects.

Figure 7: An overview of the RetinaNet architecture [30]

Gambler

Adversarial training has been recently employed for realizing structured semantic seg-
mentation, in which the aim is to preserve high-level scene structural consistencies in
dense predictions. In Gambling Adversarial Networks (Gambler) [1] paper, they rethink
adversarial training for semantic segmentation and reformulate the fake/real discrimi-
nator loss function from the original GAN to the correct/incorrect loss function. The
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Figure 8: An overview of gambling adversarial networks. The solid black arrows indicate
the forward pass. The red dashed arrows represent the two gradient flows of theweighted
cross-entropy loss. Gradient flow A provides pixel-level feedback independent of other
pixel predictions. Gradient flow B, going through the gambler network, enables feedback
reflecting the inter-pixel and structural consistency, [1]

discriminator network is replaced with a “Gambler” network that is involved in a mini-
max game with the segmentation network. The Gambler learns to distribute its budget
on areas where the predictions are incorrect, while the segmenter network learns to leave
no (structural) clues for the Gambler to make an easy, profitable bet.

An overview of adversarial gambling networks is provided in Figure 8. The Gambler
observes the RGB-image in combination with the predictions of the segmenter. Given a
limited investment budget, it predicts an image-sized betting map, where high bets indi-
cate pixels that are possibly incorrectly classified. Since the Gambler receives the entire
prediction map, it can model interpixel dependencies. Consequently, structural anoma-
lies in predictions are obvious visual clues for profitable investments. It also leverages
the correlation between predictions and ground-truth by incorporating ground-truth as
supervision for the Gambler network.

To better understand this method, we will look into the objective functions. Here, x
and y are the input image and the corresponding label-map. S(x) is the segmentation
map of input image x. D(x, y) represents the discriminator operating on segmentations y,
conditioned on input image x, and the binary cross-entropy is defined as in Retinanet and
Focal Loss. λ is the importance weighting of the adversarial loss. Equation 6 shows the
original adversarial training objective for the discriminator, and Equation 7 the segmen-
tation loss. Typically, the loss function for the segmenter is a combination of low-level
(pixel-wise) and high-level (adversarial) loss terms.

LD(x, y) = Lbce(D(x, S(x)), 0) + Lbce(D(x, y), 1) (6)

LS(x, y) = Lce(S(x), y)︸ ︷︷ ︸
pixel-wise

+ λ · Lbce(D(x, S(x)), 1)︸ ︷︷ ︸
adversarial

(7)

Similar to conventional adversarial training, the Gambler and segmenter play a min-
imax game. However, the Gambler maximizes the expected weighted pixel-wise cross-
entropy, Equation 8. These weights are the outputs of the Gambler, called the betting
map B. Intuitively, after perfect convergence, the bets should be maximum where the
pixel-wise cross-entropy loss is maximum.

LG(x, y) = − 1
wh

w,h

∑
i,j

Bi,j(x, S(x))Lce(S(x)i,j, yi,j) (8)
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On the other hand, the segmenter optimizes tominimize the gambler loss, whichmeans
improving the segmentation map to complete the adversarial loop:

LS(x, y) = Lce(S(x), y)− LG(x, y) (9)

This formulation of gambler loss encourages all bets to be maximized unless there is a
budget to spend on certain bets. Therefore, they change the betting map into a smooth
probability distribution to give a budget to theGambler. To avoid focusing bets on a single
location, the smoothing parameter β is introduced to regularizes the model to spread the
bets.

B(x, ŷ)i,j =
bσ(x, ŷ)i,j + β

∑W,H
k,l bσ(x, ŷ)k,l + β

(10)

Label Noise[1]: As mentioned in 1-stage (Dense) Detectors, focal loss addresses the
generic problem of hard-example mining for object detection without any sampling strat-
egy. However, an issue with focal loss is its inherent limitation in dealing with label
noise [1], since it is solely dependent on the ground truth label. The Gambler could be
perceived as a learned focal loss that learns to up weight difficult/wrong samples. This
approach can generalize beyond the label noise in training data by interpreting the struc-
tural dependencies and down weighting noisy samples, while focal loss is derived in a
pixel-wise manner and, therefore, cannot provide high-level structural feedback.

Gambler inObject Detection: TheGambler can be especially useful in object detection
where anchor boxes are usually independently predicted, losing the global perspective
over the image. A potential benefit of the Gambler for detection is that it perceives the
whole prediction map, consequently enabling it to model inter-class and inter-prediction
dependencies (among all anchors).

To generalize from gambling-based segmentation to detection, we need to utilize one-
stage object detectors, because they provide dense, per location predictions that is anal-
ogous to per-pixel predictions in segmentation. This is why we choose RetinaNet as our
detection baseline. Furthermore, the FPN backbone of RetinaNet urges us to adapt the
original Gambler architecture to object detection, see Full-scale Gambler Network Architec-
ture.
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Methodology

Proposed Method

The proposed method consists of two sub-networks, i.e., 1) detection network (denoted
as D): Retinanet and 2) gambler network (denoted as G): Full-Scale Gambler. The
architecture of our proposed framework is presented in Figure 9. The Gambler’s goal is
to provide a confidence map that outlines the trustworthy and untrustworthy regions in
the prediction map from the detection network by using inter-prediction information, the
image, and by incorporating the ground truth labels as a supervision signal.

To ease the description of the proposed algorithm, we first give the formal notation
used throughout the thesis. The input to the detection network is image x ∈ RH×W×3, and
the outputs of the classification head are P, class prediction scores, and L the localization
score for each bounding box proposal. Gambler receives the Image x and the layered
classification head predictions Pl (in our case P3 to P7) as the input. The per-anchor
output of the Gambler at each layer is denoted as the Betting Map Bl .

P3

P4

P5

P7

P6

B7

B6

B5

B4

B3

Detector: Retinanet Full-Scale Gambler

Class
Predictions

Betting Map

scale1 scale 2 scale 3

Figure 9: The high-level Architecture

Full-scale Gambler Network Architecture

Unlike the original use-case of the Gambler in segmentation where the output shape of
the segmentor is P ∈ RH×W×C, the Retinanet backbone has a layered structure (FPN back-
bone), where each layer is used to detect objects at a certain scale. In order to use Gambler
in our approach, we propose a full-scale UNet [32] architecture that integrates predictions
of different layers, see Figure 10. The purple boxes in the heart of the architecture show
the UNet-like formation. The UNet helps to preserve the spatial structure of the predic-
tions while the residual blocks help to strengthen the betting map with semantically-rich
deep-layer features.
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At each layer, the detector predictions are concatenated with UNet features after going
through a shared 1× 1 convolution, which transforms prediction
pl ∈ RWl×Hl×(nclass×nscale×naspect_ratios) into RWl×Hl×32. 32 is a design choice hyperparameter
called fixed channels that we mention later in the ablation study. The detector’s output has
the same channel dimensionality for each FPN layer because it represents (80) class scores.
For this reason, we apply the same 1× 1 convolution filter that transforms channels to a
fixed-size channel (the fixed channels). Asmentioned, the output space of the predictions is
sparse; thus, the 1× 1 convolution helps reduce sparsity by reducing the dimensionality.
The same reasoning holds for converting from the UNet outputs to the final bettingmaps.
By having a fixed number of channels per layer instead of having more channels for
smaller layers, we enforce an imbalance between the amount of information carried from
previous layers and the new information. This module, on the left side, is denoted as
the PreGambler Prediction module. Using shared convolutions reduces the number of
parameters, and the GPU memory usage dramatically, leading to easier training. We
experiment with not-shared convolutions for this module as well but see no further
improvements.

The PreGambler ImageModule prepares the image to bemergedwith the predictions.
We experiment with three different architectures. First, downsampling the original RGB
image. Second, not using the image. Third, using a few convolution layers to map the
image to the feature space. The outcome of the PreGambler Image is then concatenated
with the channels from P3 after going through the PreGambler Predictions.

The PostGambler Prediction module transforms the UNet predictions into the per-
anchor betting map, via 5 individual 1 × 1 convolutions and a sigmoid nonlinearity,
where the betting map at each layer is Bl ∈ RWl×Hl×(1×3×1). Thus, bets will have values in
the range of 0 ≤ bets ≤ 1. In this module, we cannot have shared convolutions because of
different channel sizes per layer. We prefer to have a class-agnostic betting map; since it
will reduce class-wise competition among bets on a specific anchor, and we could benefit
from lessmemory usage (hence a bigger batch size), especiallywhen the number of classes
is high, like in LVIS Dataset. In this case, the Gambler will still see the correlation between
class predictions and would be able to capture global structural information.
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Figure 10: The full-scale gambler network architecture, including PreGambler Image,
PreGambler Predictions, Post Gambler Predictions, and a UNet.
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Losses

Gambler Loss

D(x) is the Detector and G(x, p) is the Gambler module. x is the input image, p the
predictions from the detector, and y is the corresponding ground-truth label map that
is obtained from the matching strategy. The typical detector loss is the sum of the
classification and the regression losses, Equation 11.

LDetector(x, y) = Lreg(x, y)︸ ︷︷ ︸
regression loss

+ Lcls(x, y)︸ ︷︷ ︸
classification loss

(11)

Similar to conventional adversarial training, the Gambler and detector play a minimax
game, the Gambler is analogous to the discriminator and the detector the generator.
However, the Gambler maximizes the expected weighted classification loss, Equation 12.
These weights are the outputs of the Gambler, called the betting map B. Ideally, after
convergence, the bets should be maximum where the loss is maximum.

It is possible to use any classification loss in Equation 12. However, we use the focal
loss, which is the detector loss for better alignment of both training modules. In the
ablation study, we experiment with the original binary cross-entropy loss as well.

LG(x, y) = −
L

∑
l

W,H,S,A

∑
i,j,s,a

Bl(x, D(x))i,j,s,a · Lcls(D(x)i,j,s,a, yi,j,s,a) (12)

On the other hand, the detector optimizes a combination of loss terms: the regression
loss, the conventional focal loss for classification and the reverse of the newly adversarially
weighted focal loss. Intuitively, the Gambler will point to faulty predictions, potentially
where the loss is high. This means the detector tries to improve prediction quality in
places where the Gambler identified as faulty, hence completing the adversarial loop:

LD(x, y) = Lreg(x, y)︸ ︷︷ ︸
regression loss

+ LFL(x, y)︸ ︷︷ ︸
classification loss

− λ · LG(x, D(x))︸ ︷︷ ︸
adversarial

(13)

λ controls the influence of the Gambler loss on the total detector loss.

Normalization

This formulation of gambler loss encourages all bets to be maximized unless there is a
budget to spend on certain bets. Therefore, we use the same formulation as in [1] in order
to distribute the bets. The normalization forces the bets to sum up to one. To avoid a
focused spiky bet on a single location (all bets 0 except for one), the smoothing parameter
β is used to spread the bets. We show later in the ablation study and analysis how crucial
the β is and how it influences the betting maps.

Bl(x, p)i,j,s,a =
bl(x, p)i,j,s,a + β

∑L
l ∑W,H,S,A

k,m,n,o (bl(x, p)k,m,n,o + β)
(14)

It is important to note that the original Focal loss is normalized by the number of
matched foreground anchors since the other anchors are down-weighted and contribute
the least. Here, the normalization of weights that sum to 1 and multiplying it by the
loss directly normalizes the loss. Hence, we multiply the Gambler loss by the number of
matched foregrounds to avoid double normalization.
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Training and Inference

Training

Ourmethod’s training follows an adversarial training scheme, as explained inmore detail
in Training Details. The detector and the Gambler parameters are optimized interchange-
ably. For each minibatch, the Retinanet outputs the corresponding prediction logit maps
and the loss map. The Gambler loss is calculated accordingly: The sigmoid of the pre-
diction logits is summed with the smoothing parameter β, after which the per-anchor
normalization is done. The classification loss is summed per-anchor over all the classes.
Finally, the negative sum of the Hadamard product (element-wise) of the betting map
with the classification loss is calculated as the Gambler loss. The Gambler and detector
are then optimized with losses 12 and 13, respectively.

Algorithm 1 Training Loop
1: Pre-train Detector with IMAGENET
2: Initialize Gambler last layer with − log 1−π

π
3: gambler_optimizer only optimizes the Gambler parameter
4: detector_optimizer only optimizes the Detector parameter
5: while iter < MAX_ITER do
6: data.img, data.gt← sample a minibatch from the train loader
7: prediction_logits, LD = Retinanet(data)
8: if Gambler_iter then
9: gambler_output = Gambler(prediction_logits, data.img)
10: LG ← calculate_gambler_loss(gambler_output, LD.cls)
11: LG.backward()
12: gambler_optimizer.step()
13: if Detector_iter then
14: gambler_output = Gambler(prediction_logits, data.img)
15: LG ← calculate_gambler_loss(gambler_output, LD.cls)
16: LD.cls← LD.cls− λ · LG
17: LD.backward()
18: detector_optimizer.step()
19: function calculate_gambler_loss(gambler_output, Lcls)
20: betting_map← σ(gambler_output)
21: betting_map← betting_map+ β

22: bw,h,s,a ←
bw,h,s,a

betting_map.sum() ∀w, h, s, a ∈W, H, S, A, b ∈ betting_map
23: LG ← −∑ betting_map · Lcls
24: return LG

Inference

The Gambler is only used during training. During inference, the Gambler is ignored, and
only the detector is used, so no extra inference time is needed. RetinaNet is comprised of
the ResNet-50-FPN backbone, a classification subnetwork, and a box regression subnet-
work. Thus, inference involves forwarding an image batch through the network. After
setting detector confidence threshold at 0.05, to improve speed, top 1k box predictions
per FPN level are decoded. The top predictions from all FPN levels are merged, and
non-maximum suppression with a threshold of 0.5 is applied to yield the final detections.

14



Experimental Setup

Datasets

COCO

MS COCO [3] is a response to the criticism of ImageNet, where objects tend to be mostly
large and well-centered, making the ImageNet dataset far from reality. Thus, MS COCO
was introduced that contained complex everyday scenes with common objects in their
natural context, closer to real-life scenarios. COCO is a large scale dataset with 80 cate-
gories. There are three image splits in COCO (version 2017): training, validation, and test
with 118287, 5000, and 40670 images. The COCO test set only contains box and mask an-
notations. We train our models on the training set and report all results on the validation
set.

LVIS

Currently, COCO is the most commonly used detection benchmark. However, COCO has
only 80 categories, which is still too small to understand more complicated scenes in the
real world. Recently, a newly collected benchmark dataset, LVIS [4], has been proposed
to present a more challenging object detection benchmark, where annotations are closer
to real-world data distributions. LVIS contains the same COCO images; nonetheless,
annotations comprise of 1230 categories in version v0.5. LVIS simulates the real-world
long-tail scenario where a large number of categories are rare, and a small number
of categories are frequent. Figure 11 compares COCO and LVIS datasets, where LVIS
contains more diverse categories per image and has a long-tail distribution of instances
per class.

In LVIS, categories are divided into three groups based on the number of images
containing those categories: rare (1-10 images), common (11-100), and frequent (>100).
We train our models on the 57k training set and evaluate them on the 5k validation set.

Figure 11: Left: compares the LVIS dataset statistics with COCO. LVIS contains more
diverse categories per image and more few-shot classes. Right: The long-tail number of
instances per category. The orange dots show categories that are in common with COCO.
Image courtesy of [4]
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Implementation details

Baseline Detector

We implement standard Retinanet equipped with an FPN backbone [2] as our baseline
model. We use translation-invariant anchor boxes. The anchors have areas of 322 to 5122

on pyramid levels P3 to P7, respectively. At each pyramid level, there are anchors at three
scales of sizes 20, 21/3, 22/3, and one aspect ratio 1:1. Altogether, there are 3 anchors per
level, and across levels, they cover the scale range of 32 - 813 pixels in relation to the
network’s input image.

Gambler

We implement the Gambler as specified in more detail in Full-scale Gambler Network
Architecture. The PreGambler Image module downsamples the RGB image with bilinear
interpolation and a stride of 8, keeping the color channels intact. The Gambler is trained
with the focal loss in Equation 12 with the smoothing parameter β of 0.1. The default
λ = 1 unless specified otherwise.

The source code is available at:
https://github.com/Melika-Ayoughi/Full-Scale-Gambler-for-Object-Detection/.

Training Details

Training Schedule

For training the models, similar to the conventional adversarial training, the detector
and Gambler are trained in an alternating fashion. First, the Gambler is trained for 20
iterations while the detector is frozen, and then the detector is trained for 40 iterations
while the Gambler is frozen. In order to keep the performance of the detector trained
with and without Gambler comparable, we fix training the detector to 90k iterations, and
train the Gambler for 45k iterations, making a total of 135k iterations. For LVIS, batch-size
is halved, so the detector is trained for 180k iterations and the Gambler for 90k iterations.
Training time is approximately 33 hours for COCO and 50 hours for LVIS.

Optimization

We use an initial learning rate of 0.01 for the detector and 0.0001 for the Gambler, which is
then divided by 10 at 105k and again at 120k iterations. A gradual warmup learning rate
scheduling from [33] is adopted that linearly ramps up the learning rate from a small to a
large value. This gradual increase avoids a sudden jump in the learning rate, allowing for
better convergence at the start of the training. After the warmup period of 1000 iterations,
we start to the original learning rate scheduling. The Gambler is trained with the Adam
optimizer [34] unless otherwise specified. RetinaNet is trained with stochastic gradient
descent (SGD) [35] with a weight decay of 0.0001 and momentum of 0.9. We use two 32-
Gigabyte GPUs with a total of 16 images per minibatch (8 images per GPU). The training
loss of the detector is the sum of the focal loss and the standard smooth L1 loss used for
box regression minus the Gambler loss, see Losses for more details.

Preprocessing

Training images are randomly resized such that their shorter edge is 800 pixels while the
longer edge is no more than 1333. We use horizontal image flipping as another form of
data augmentation unless otherwise noted.
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Initialization

We experiment with the ResNet-50-FPN backbone for the detector. It is pretrained on
ImageNet1k; we use themodels released by [36]. New layers added for FPN are initialized
as in [2]. All new convolution layers except the final one in the RetinaNet subnets are
initialized with zero bias, and a Gaussian weight with σ = 0.01. For the final convolution
layer of the classification subnet, we initialize the bias to b = − log 1−π

π , see Equation 15.
This initialization setting is the same as in the original Retinanet.

σ(x) = π

1
1 + e−x = π

1 + e−x =
1
π

log
1− π

π
= −x

(15)

This ensures that at the start of the training, every anchor is foreground with a low
probability of almost π. Based on [focal loss], we use π = 0.01 in all experiments. This
initialization prevents the large number of background anchors from generating a large,
destabilizing loss value in the first iterations of training.

On theother hand, theGambler is initialized fromscratch. All layers except the last layer
are initialized with the default initialization of Pytorch. For the final convolution layer,
we initialize the bias to b = − log 1−π

π again with the same π = 0.01. This initialization
scheme helps the Gambler to start with a stronger prior that most anchors should have
low bets since they are most probably backgrounds. In our experiments, we observed
that this helps faster convergence.

Evaluation Metrics

IoU (Intersection over Union)

For any predicted box proposal, we use IoU or Jaccard Index to decide whether it matches
a ground-truth object. IOU is defined as the intersection area between the predicted
bounding box and the ground-truth bounding box divided by their union. A prediction
is considered True Positive if IoU > threshold and False Positive otherwise.

Precision and Recall

Recall is the True Positive rate, i.e., of all the actual positives, how many are True Positive
predictions. Precision is the ratio of True Positives to all the positive predictions, i.e., of
all the positive predictions, how many are correct True Positives.

Recall :=
TP

TP + FN
=

TP
#ground truths

(16)

Precision :=
TP

TP + FP
=

TP
#predictions

(17)

Given the list of proposal boxes, corresponding confidence scores, and the IoUs, we
calculate AP in the following manner. First, we sort the predictions based on the confi-
dence scores per class. In case there is more than one proposal for a single ground-truth
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object, the proposal with the highest IoU is considered as TP, the rest as FP. Then, we
calculate the precision and recall based on the formula 16. The precision and recall values
are plotted to get the precision-recall (PR) curve. The precision at each recall level R is
interpolated by taking the maximum precision measured for any recall bigger than R.
Average Precision (AP) is the area under the PR curve. Now, we have AP per class, Mean
Average Precision (mAP) is the averaged AP over all the object categories. Unless stated
otherwise, AP and mAP can be used interchangeably.

COCOmAP

Usually, a prediction with IoU > 0.5 is considered as True Positive. This means that
two predictions of IoU 0.5 and 0.9 would have equal weight in the mAP. Thus, a certain
threshold introduces a bias in the evaluation metric. To solve this, they [3] use a range of
IoU threshold values, calculate mAP for each threshold, and average to get the final mAP.
In COCO, the IoU threshold ranges from 0.5 to 0.95, with a step size of 0.05 represented
as AP@[.5:.05:.95].

mAPCOCO =
mAP0.50 + mAP0.55 + ... + mAP0.95

10
(18)

Thus, in COCO evaluation: First, for each class, AP is calculated at different IoU
thresholds and averaged to get the AP per class. Second, the final AP is the average of
per-class APs.

AP[class] =
1

nthreshold
· ∑

iou∈thresholds
AP[class, iou] (19)

AP =
1

nclass
· ∑

class∈thresholds
AP[class] (20)

In COCO evaluation, six metrics are provided, three of which are thresholding the BB
at different IoUs:

1. AP: AP at IoU=0.50:0.05:0.95 (primary challenge metric)

2. AP@IoU=0.5 (PASCAL VOC metric)

3. AP@IoU=0.75 (strict metric)

The remaining three are calculating AP across scales, in order to capture performance
across objects of different sizes:

1. APs: AP for small objects: area < 322 px

2. APm: AP for medium objects: 322 < area < 962 px

3. APl : AP for large objects: area > 962 px

LVIS mAP

Unlike COCO evaluation process, since LVIS is a sparse annotated dataset, detection
results of categories that are not listed in the image level labels will not be evaluated. In
addition to the six AP values in COCO, in LVIS, categories are divided into three groups
based on the number of images containing those categories and the AP is evaluated for
rare (1− 10 images) , common (11− 100 images), and frequent (> 100 images) classes;
APr, APc, APf respectively.
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Results

In this chapter, we present our quantitative findings and comprehensive analysis to find
the angle where our method outperformed the baseline. We perform ablation study on
the most significant parameters, compare our method to the baseline on COCO and LVIS,
analyze per-class performance and conclude by qualitative analysis to observe what is
learned by the Gambler.

Ablation Study

In this section, we discuss the effects of the most influential hyperparameters to justify
specific design choices throughout the thesis.

Classification Loss Mode

First, we investigate the influence of the classification loss used in the Gambler loss
formulation 12. The Gambler loss can be the weighted sum of the Focal loss or the Cross-
Entropy loss. In these experiments, we train the detector with the original loss (sum of
the Focal loss and the regression loss) and only change the Gambler loss formulation. By
looking at Table 1, we observe that for any β, reweighting the Focal loss results in better
outcomes, although limited. One of the reasons for that is the cross-entropy was used in
its original formulation, unlike the α−balanced cross-entropy loss in [2] that could help
with foreground background imbalance. Another reason why Focal outperforms CE loss
is that Focal is also used in training the detector.

Smoothing (β)

The smoothing parameter β is the most critical hyperparameter. β ranges between 0 to 1.
β = 0 would result in a focused betting map of all zeros except for one point because the
Gambler loss is maximized when the bet corresponding to the maximum loss is 1. Too
big of a β would further result in all bets being equally small. This would prevent the
gambler from focusing on any specific prediction, limiting its effect on training. Therefore
finding the perfect 0 < β ≤ 1 is crucial to spread the bets to uncertain predictions; not too
big that the bets would be wasted and not too small that the effect would be insignificant.
The smaller the β, the higher the maximum bet and the lower the minimum bet, thus a
bigger gap between the maximum and the minimum bets, see Figure 21 in the Appendix
A. In that section, we also prove the higher gap between bets for different β values. Table 1
suggests that β = 0.1 achieves the highest AP, although the difference between results
with the β in the correct range leads to somewhat similar outcomes.
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Table 1: Varying β and formulations for gambler loss, on COCO validation set

Focal Mode CE Mode
β AP AP50 AP75 AP AP50 AP75

1 34.553 55.037 36.305 34.407 54.993 36.038
0.1 35.029 55.523 36.977 34.360 55.229 35.949

0.01 34.700 55.425 36.513 34.213 55.198 35.961

Lambda (λ)

λ controls the influence of the Gambler loss on the total detector loss, Equation 13. Too
high of λ degrades performance to a great extent. This is probably due to the Gambler
loss dominating the total loss, with the box regression term being almost disregarded,
leading to incorrect localization. However, the experiments are not sensitive to the range
of 1 < λ < 10, as shown in Table 2.

Table 2: Varying λ values for the detector loss, on COCO validation set

λ AP AP50 AP75 APs APm APl

1 35.029 55.523 36.977 20.493 39.268 45.615
2 35.245 55.845 37.204 21.631 39.021 44.887

10 35.155 55.732 37.275 21.508 39.058 45.848
100 28.949 47.409 30.145 14.549 31.230 39.035
200 29.199 47.974 30.607 15.057 31.750 39.154

PreGambler Image Module

Thedesign choice of the PreGambler ImageModule is essential because it determines how
the Gambler network perceives the image integrated with the prediction features. Thus,
we experiment with three different architectures. In downsample_image, we downsample
the original RGB image with a stride of 8. In no_image, we do not use the image as
an input to the Gambler. In img_conv_64, a Double convolution module (2 sequences
of 3× 3 convolution, batch normalization and ReLu) followed by three Downsampling
modules (2-dimensional Maxpooling, and a Double convolution) are used to map the
image to a feature space with 64 channels. 64 is a hyperparameter called the fixed channels.
Table 3 shows how each design choice influences the final AP result. The good results
in no_image suggest that the Gambler network only uses the detector’s predictions to
reason about uncertainties, and that can improve AP for small and medium objects while
slightly degrading performance for larger objects. img_conv_64 achieves the lowest result
probably because training extra convolutions for the image is expensive and difficult to
do with the current Gambler loss.

Comparison with Baseline

We evaluate the baseline RetinaNet, explained in Baseline Detector, on COCO and LVIS
datasets, and compare coco_2017_val and lvis_v0.5_val results to our approach. The
results suggest minimal influence of the Gambler on the training of the detector. We will
discuss our main takeaways and suggestions from these experiments in the Conclusion.
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Table 3: Varying architectures for PreGambler Image

PreGambler Image Mode AP AP50 AP75 APs APm APl

downsample_image 35.113 55.705 37.229 20.536 38.960 45.166
no_image 35.052 55.240 37.105 22.268 39.013 44.881

img_conv_64 34.529 55.620 36.488 20.730 38.554 44.724

Table 4: Comparison of our approach with the baseline on COCO dataset.

Experiment AP AP50 AP75 APs APm APl

Baseline 35.113 55.705 37.229 20.536 38.960 45.166
Ours 35.245 55.845 37.204 21.631 39.021 44.887

Table 5: Comparison of our approach with the baseline on LVIS dataset.

Experiment AP AP50 AP75 APs APm APl APr APc APf

Baseline 17.921 28.902 18.340 13.904 22.889 30.588 4.702 16.397 25.108
Ours 17.839 28.656 18.363 13.271 22.241 31.331 4.475 17.021 24.402

Analysis

Correlation Analysis

The minimum effects of our method compared to the baseline model motivated supple-
mentary per category analyses. In this analysis, the correlation of class frequency, size of
objects, class-entropy, and the baseline AP on per-class improvements are investigated on
the COCO dataset.

In class frequency, the categories are sorted based on the number of instances in
descending order, with frequent classes on the left. Figure 17a shows the per-class AP
differencebetweenourmethodand thebaselinemodel. For several of the rarest categories,
ourmethod shows a consistent improvement over the baseline, even up to 8APdifference,
however, there is no clear correlation between class frequency and AP improvements.

In object sizes, the classes are sorted based on the average area of the annotations
relative to the image size, from large to small. Figure 17b depicts no correlation between
object sizes and their performance, even though some of the largest classes show better
performance for the baseline.

A big challenge in object detection is clusters of similar objects. For instance, detecting
all the instances of books in an image of a bookshelf poses a problem for many detection
methods. One reason for this difficulty is, that any anchor-based approach would need
a very fine grid of anchors, to make sure that around one anchor only one instance is
captured. Secondly, clusters of similar objections will often also exhibit occlusion (like a
flock of sheep) in which boundaries are not clear anymore. As a proxy analysis of this
problem, we plot the class-entropy in Figure 17c, which shows the average number of
instances of a class in an image with at least one object of that class.

In the last correlation analysis, we analyze whether our method improves categories
that initially score a low AP in the baseline, namely the hard categories. In Figure 17d,
the categories are sorted in descending order based on their AP performance in the
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baseline, with hairdryer the hardest category. It is observed that, indeed, most improved
categories have low APs in the baseline. The Gambler helps in focusing on the low
performing classes, by focusing the loss on them. Nevertheless, our approach performs
worse on initially high-AP classes.

For all the above analyses, the per-class AP values with the same sorting scheme are
depicted in Figure 22 in the Appendix section.

Noise Analysis

As mentioned in Gambler, Samson et al. [1] perceive the Gambler as a learned focal loss
that learns to generalize beyond the label noise by interpreting the structural inter-
dependencies and down-weighting noisy samples, while Focal loss is calculated pixel-
wise, ignoring high-level structural information. In order to observe the flexibility of our
approach to label noise, we create three noisy datasets, with p1 = 10%, 20%, 50% noise
factors. The label of each object annotation will switch (maybe also to itself) with a prob-
ability of p1. The new label is chosen with a probability of p2 that is proportional to the
frequency of categories, to preserve the class label distribution. Figure 12 compares the
AP of the baseline and our approach trained on these three datasets. The AP naturally
decreases with higher noise factors; however, either the baseline is the winner, or it per-
forms almost equally well. This experiment suggests that the Gambler does not improve
robustness on noisy labels, at least in the detection setting.

Generalization Analysis

Trainingwith the Gambler improves the AP for several rare classes. One possible hypoth-
esis is that it can help generalize to categories with fewer training samples. This analysis
aims to observe the generalization ability of our approach and whether the Gambler loss
acts as a regularizer for the detection network during training. To test this hypothesis,
we build four sampled datasets from the COCO 2017 Train set containing 20%, 10%, 5%,
and 1% of the images. We train the baseline detector with and without the Gambler with
these four training sets and evaluate the results on the COCO 2017 Validation set. Figure
12 compares the AP of baseline and our approach trained on each dataset. Although the
AP values are close for the entire dataset, the baseline generalizes better sometimes even
with a great margin (the 5% dataset).

(a) Noise Analysis (b) Generalization Analysis

Figure 12: Left: Comparison of the AP performance of our method with the baseline
under 4 different label noise factors. Right: Comparison of the AP of our method versus
baseline at different sizes of dataset to understand the generalization ability.
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Table 6: Comparison of our approach with the baseline trained on COCO-LT dataset.

Experiment AP AP50 AP75 APr

Baseline 35.117 55.263 37.290 37.46
Ours 34.868 55.053 36.808 37.88

Long-tailed Analysis

Inmost experiments, it is observed that our approach outperforms the baseline on the two
most rare categories: toaster and hairdrier. To test our approach on rare classes, we build
a long-tailed COCO dataset where we aim to keep the frequency of all categories intact,
except for the top 10 most rare categories. This is done by eliminating images with the
most instances of rare categories until the number of instances is halved while having the
least effect on other categories. The diagrams of #instances per category of the original
COCO and the COCO-LT can be viewed in Figures 18, respectively. Figure 13a depicts the
drop in those 10 categories for the baseline detector trainedwith COCO-LT versus COCO.
Figure 13b shows the AP differences between our approach and the baseline detector
trained with COCO-LT. The figure shows our approach outperformed the baseline for
5/10 categories, and the average AP for those 10 categories marginally improved from
37.46 to 37.88, although the total AP dropped from 35.11 to 34.86, Table 6.
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(a) The AP difference of the baseline model trained with COCO-LT compared to COCO. The AP
for the last 10 categories has decreased for the baseline detector.
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(b) The AP difference of our method compared to baseline on COCO-LT. AP of half of the rare
categories improved, leading to marginal 0.5 AP improvement for rare classes.
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Qualitative Analysis

Thus far, we have observed various analyses that confirm our method has a minimal
effect on training an object detection system. This necessitates visualizing betting maps
corresponding to each image toprove themulti-scaleGambler is learningmeaningful bets.
For each image, the multi-scale Gambler predicts 15 per-location bets, corresponding to 5
FPN layers and 3 different anchor scales. For better analyzing the role of the Gambler, we
visualize the loss and anchorsmatchedwith foreground/background/ignored, alongside
the betting map at each individual layer. Figure 14 shows one of the layers from Figure
15. In that layer, the top row shows the corresponding matched ground-truth, middle
row the loss, and the bottom row the corresponding bettingmap. Each column visualizes
the same three maps for a given scale. Scale 1 denotes the anchor scaled 2

2
3 times, for

detecting bigger objects and scale 3 is the original anchor scale, for smaller objects. Since
we have a full-scale Gambler, the same 9 maps are visualized per layer in Figure 15. All
the samples in Figure 19 follow the same structure.

At each layer and scale, per-location anchors are matched with either one of the fore-
ground classes or a background class. In this visualization, if the anchor is matched with
a foreground (0.5 < IoU) is grey, if in the ignored region (0.4 < IoU < 0.5) is white and if
background (IoU < 0.4) is black; this is howmatching between anchors and ground-truth
objects is done in Retinanet. The loss and the betting map are normalized between 0 and
1 per layer for visualization purposes. Also 10× 10 and 5× 5 layers are upsampled with
bilinear interpolation for better visualization.

Figure 14: the top row shows the corresponding matched ground-truth, middle row the
loss, the bottom row the corresponding betting map. Each column visualizes the same
three maps for a given scale. Scale 1 denotes the anchor scaled 2

2
3 times, for detecting

bigger objects and scale 3 is the original anchor scale, for smaller objects. Groundtruth:
if the anchor is matched with a foreground (0.5 < IoU) is grey, if in the ignored region
(0.4 < IoU < 0.5) is white and if background (IoU < 0.4) is black

The betting map agrees mostly with the ground-truth map at each layer rather than
correlating with the loss. In other words, gambling bets are high wherever there is an
object. Depending on the smoothing parameter β, the blobbiness of the bets change,
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Figure 15: Visualization of the 14 for all 5 layers.

but they always correlate with where the ground truth objects are. Figure 16 shows the
betting maps at different β parameters for the same image. Besides, usually, the betting
maps at each layer are almost the same across all scales. This is expected because the
full-scale Gambler has only access to an approximate location of predictions among all
scales (the center of the anchors), and the anchor location is not explicitly given to the
Gambler.

Figure 16: For the given image, each column shows the corresponding (ground-truth,
loss and betting map) of the layer 5× 5 with β = 0, β = 0.01, β = 0.1, β = 1, respectively.
Higher β leads to more uniform bets while β = 0 generates the most spiky bets and the
middle-ranged β is more blobby.

By looking at the betting maps and how they correlate with the ground-truth objects,
our method could be perceived as a reversed two-stage detector, that unlike conventional
two-stage detectors where a few region proposals are filtered for the second stage, in this
method, all anchors are used during the first stage and the second stage determines the
essential focus points or the foreground regions.

In Figure 20, the predictions of ourmethod (left), the baseline (middle), and the ground-
truth annotations (right) are compared for a confidence threshold of 0.5. The default
confidence thresholdduring inference is 0.05; however,we choose to seehigher-confidence
proposals for visualization purposes. We observe that the average confidence score is
higher in our method for proposals with confidence scores higher than 0.5 although
this is not true for low confidence thresholds. These observations suggest that training
an object detection model with a Gambler focuses on certain proposals that make the
detector more confident about those proposals, however compensating more uncertain
proposals.
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(c) The class-entropy. The class sheep has the highest average number of instances per image
while images with a toaster are less likely to contain multiple toasters.
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(d) Baseline AP

Figure 17: Difference of AP between our method and the baseline with different sorting
schemes. Values higher than y = 0 mean that our method outperformed baseline. This
evaluation is done on the final results reported in Table 4 with (λ = 2)
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(b) COCO-LT

Figure 18: #instances per category in log-scale sorted by category frequency in COCO
and COCO-LT datasets.
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Figure 19: Samples of images and the corresponding ground-truth, loss and the betting
maps at 5 different layers and across 3 scales.
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Figure 20: Left: our method prediction, middle: baseline predictions, right: ground-
truth annotations, for visualization purposes only proposals with confidence threshold
Con f > 0.5 are shown.
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Conclusion

In this work, we introduced a new adversarial training scheme for object detection that
incorporates high-level structural information in predictions. We proposed a Full-Scale
Gambler architecture that adapts Gambling networks in segmentation to object detection.
We performed thorough ablation studies to validate our architectural design choices and
performed an extensive analysis to determine why our method yielded minimal gain
compared to the baseline.

We determine the following potential sore points as the cause:

1. One of the fundamental differences between segmentation and detection is: In
segmentation, the entire output is evaluated both during training and inference.
Nevertheless, in detection, during training, a lot of low-quality anchors are predicted
and matched with a particular object; however, during inference, a lot of those
anchors are removed by non-maximum suppression (NMS). Giving all the low-
quality predictions to the Gambler could make betting on the incorrect predictions
difficult because it sees a lot of predictions that will never "survive" NMS.

2. As mentioned in the introduction, the most challenging problem in one-stage object
detection is the foreground-background imbalance, which leads to poor perfor-
mance [2]. The output of the detection network consists mostly of backgrounds
and a few foregrounds. In segmentation, the outputs are dense, while in detection,
the outputs are sparse across predictions. The Gambler potentially suffers from the
same foreground-background imbalance, considering the imbalance in predictions
given as input.

3. Unlike binary cross-entropy loss where correct classifications are rewarded, and
incorrect classifications are penalized, in the original Gambler loss formulation,
wrong bets are not penalized, but only correct bets are rewarded. This formulation
leads to unstable training and slows down convergence.

4. One of the biggest challenges for the Gambler is that it only has access to the
approximate spatial location of predictions given by the (x, y) location of the anchor
center on the prediction featuremap, which is later sustained in theUNet. Although
the anchor locations can be implicitly derived from the loss function, the lack of
explicit anchor location and coverage could limit the Gambler’s reasoning about the
spatial extent of objects and their relationships.

5. Based on our ablation study on different architectures for thePreGambler Image,
we observed that the Gambler does not exploit the input image, making it even
harmful for performance in certain settings. This suggests that the Gambler is only
using the predictions. By leveraging the information from the image alongside the
predictions, the Gambler task would be much more straightforward.
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6. The UNet structure is a clean way of aggregating predictions from several layers,
but it has a disadvantage: the predictions coming from the highest resolution
layer pass through the entire UNet, while the predictions coming from the lowest
resolution only go through a few layers. This might suggest that not all predictions
are considered and trained in the same way, potentially impacting the results.

Future Work To overcome some of the challenges, we have some insights and ideas
that can be investigated further as future directions. In response to the first challenge,
where low-quality anchors confuse the Gambler, a masked loss could be proposed where
only high-quality anchors or anchors within a particular range of IoU are accepted.

As discussed before, the foreground-background imbalance is not only challenging in
generic one-stage object detection but also in our method. Especially in our method, the
minimum bet per location is quite small, but the sum of many bets could dominate the
gradient and the loss function, which could be twice as harmful to the detector. These
small values could be omittedwith a thresholding function in the last layer of theGambler.

To encourage faster convergence and stable training, we could propose the Gambler
loss in the form of cross-entropy loss with masked classification loss as pseudo labels.
Also, adapting the traditional GAN loss could be beneficial.

Incorporating box proposal coordinates in Gambler is extra challenging because they
are relative to the image, and simply concatenating them with the predictions would
probably not work, and besides, learning the spatial interpretation of coordinates is not
trivial. One idea would be masking the inputs to the Gambler with a binary mask.
Another is to use the regression loss as an additional supervision signal for the Gambler
loss.

To conclude, we propose to make the task for the Gambler easier by limiting the inputs
or outputs or proposing amore powerful proven loss function like the standard GAN loss
that could help point to uncertainties better.
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A

In order to calculatemaximumandminimumbettingmap, we can use Equation 21. There
are approximately 25k anchors, thus the minimum and maximum bet can be calculated
as in Equation 22. The difference between the bets becomes larger as β goes to 0.

Bmax =
1 + β

#anchors× β + 1

Bmin =
β

#anchors× β + 1
#anchors = (80× 80× 3 + 40× 40× 3 + 20× 20× 3 + 10× 10× 3 + 5× 5× 3)

= 25575

(21)

Figure 21 shows the maximum bet during training across different β values.

Figure 21: shows the maximum bet during only training the gambler and fixing the
detector. After 20k iterations, β = 0 achieves the highest bet.

{
Bmax = 1 β = 0
Bmin = 0 β = 0

{
Bmax = 0.00393 β = 0.01
Bmin = 0.00003 β = 0.01

{
Bmax = 0.00042 β = 0.1
Bmin = 0.00003 β = 0.1

{
Bmax = 0.00007 β = 1
Bmin = 0.00003 β = 1

(22)
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(d) Baseline AP

Figure 22: The per-class AP values comparing our approach (blue) to the baseline (red),
categories are sorted by frequency, object size, average class entropy, and baseline AP
from top to bottom.
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Figure 23: A few more examples of the comparison of our method and the baseline
proposals.
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